
M. Koziri et al.: Implementation of the AVS Video Decoder on a Heterogeneous Dual-Core SIMD Processor 673

Contributed Paper
Manuscript received 01/18/11
Current version published 06/27/11
Electronic version published 06/27/11. 0098 3063/11/$20.00 © 2011 IEEE

Implementation of the AVS Video Decoder
on a Heterogeneous Dual-Core SIMD Processor

Maria Koziri, Member, IEEE, Dimitrios Zacharis, Ioannis Katsavounidis, Member, IEEE, and Nikos Bellas

Abstract — Multi-core Application Specific Instruction

Processors (ASIPs) are increasingly used in multimedia
applications due to their high performance and
programmability. Nonetheless, their efficient use requires
extensive modifications to the initial code in order to exploit
the features of the underlying architecture. In this paper,
through the example of implementing Advance Video Coding
(AVS) to a heterogeneous dual-core SIMD processor, we
present a guide to developers who wish to perform task-level
decomposition of any video decoder in a multi-core SIMD
system. Through the process of mapping AVS video decoder to
a dual-core SIMD processor we aim to explore the different
forms of parallelism inherent in a video application and
exploit to speed-up AVS decoding in order to achieve real time
functionality. Simulation results showed that the extraction of
parallelism at all levels of granularity, especially at the higher
levels, can give a total speed-up of more than 195× compared
to a software x86-based implementation, which enables real-
time, 25fps decoding of D1 video1 .

Index Terms — AVS, video decoder, SIMD processor, multi
core processor.

I. INTRODUCTION

In the last few years, we have seen the emergence of a number
of video standards for applications spanning from wireless
low-rate, to high definition broadcast video. These systems
have been implemented with a variety of single core or multi-
core technologies from general purpose processors (GPPs) to
fixed ASICs. Industry’s demands for high quality, high
resolution, real-time video decoding, usually under low-power
constraints, is a challenging task which continues to tax the
ability of multimedia architectures to deliver a cost effective
solution.

High performance processors offer a flexible solution by
implementing video standards in software and hiding the
underlying hardware organization from the application
developer. Multimedia ISA extensions, like MMX, SSE etc.,

1 M. Koziri is with the Department of Computer and Communication

Engineering, University of Thessaly, Volos, 38221, Greece (e-mail:
mkoziri@inf.uth.gr).

D. Zacharis is with the Department of Computer and Communication
Engineering, University of Thessaly, Volos, 38221, Greece (e-mail:
dzaharis@inf.uth.gr).

I. Katsavounidis is with the Department of Computer and Communication
Engineering, University of Thessaly, Volos, 38221, Greece (e-mail:
ioannis.k@inf.uth.gr).

N. Bellas is with the Department of Computer and Communication
Engineering, University of Thessaly, Volos, 38221, Greece (e-mail:
nbellas@inf.uth.gr).

feature vector operations to exploit the data-level parallelism,
which is abundant in such applications [1][2]. However, using
multi-GHz processors [3] is out of the question for embedded
systems due to the "power wall" problem and the high cost. At
the other extreme, fixed ASICs target special cases that
require very high throughput or very low power dissipation,
yet they suffer from little or no programmability and high
development costs [4].

Application Specific Instruction Processors (ASIPs) such as
DSPs or multimedia processors are used to bridge these two
extremes by combining the best of two worlds:
programmability similar to GPPs and performance close to
ASICs within a particular application domain. ASIPs are an
appealing solution for applications with evolving standards
that allow a high degree of added value on algorithmic IP
innovation. Their superior efficiency comes at the cost of
forcing the developer to think about how the application can
be optimally mapped into the underlying architecture. The
main problem with multi-core platforms is that modern
compilers and run-time systems offer little or no help in
extracting task level parallelism from the application.

This paper describes the porting of the AVS (Advanced
Video Standard) [5] video decoder to a heterogeneous dual-
core SIMD processor. AVS was drafted by the AVC work
group of China to replace older and royalty-burdened
standards such as MPEG-2 and H.264 mainly in consumer
applications. The dual-core SIMD processor used for this
work includes preconfigured versions of a 32-bit configurable
architecture optimized for video encoding and decoding. Its
enhanced instruction set supports all popular video codecs
such as MPEG-4, H.264, VC-1 (all in Main Profile) for
performance up to D1 resolution, i.e. 720×576×25 (PAL) or
720×480×30 (NTSC) pixels/sec. The procedure followed to
port AVS decoder to this processor was to start from an open
source implementation of the AVS decoder, OpenAVS, which
targets a GPP platform, and to gradually transform the code so
as to enable a dual core implementation on a SIMD processor.
This procedure may serve as a guide to developers who wish
to perform task-level decomposition of any video decoder in a
multi-core system, while most of the optimization techniques
presented in this paper are generally applicable to any SIMD
processor. Our aim is to achieve real time, 25 fps, progressive
D1 resolution (720×576) AVS video decoding.

The challenge of mapping a new video decoder in a
heterogeneous multi-core engine is to detect and extract
parallelism at all levels of granularity, especially at the higher
levels. In this work we explain how different forms of

674 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

parallelism at the block level (instruction and SIMD
parallelism) and at higher levels (task and pipeline
parallelism) are exploited by the specific core, and we analyze
the contribution of each form of parallelism in the total speed-
up.

The rest of the paper is organized as follows. In Section II
we briefly present the AVS Video Standard and the
architecture of the target platform. Section III is dedicated to
the process of porting AVC to target platform. More precisely,
in Section III.A we describe the software optimizations made
and in Section III.B the block-level parallelism. Section III.C
illustrates the task-level parallelism, while Section III.D
summarizes the overall optimizing process. Finally, Section
IV concludes the paper.

II. AVS VIDEO STANDARD AND THE TARGET PLATFORM

A. AVS Video Standard

The Audio Video Coding Standard work group of China
developed the Advanced Video Coding Standard (AVS), the
first audio video standard developed by China independently.
The first draft, which was completed in 2003, initially targeted
at high definition, high quality broadcast and digital media
storage applications. Due to its limited target, AVS achieves
both higher efficiency and lower complexity compared to
other video coding standards such as MPEG-2 [6], MPEG-4
[7] and H.264/AVC [8].

Although, from functional modules point of view, AVS
is similar to H.264/AVC, as shown in Fig. 1, the
techniques, used by AVS to implement each module, differ
from those used in H.264. Some of these differences are
presented bellow, while a complete overview of them can
be found in [9].

 Entropy Coding: AVS uses kth -order Exp-Golomb codebook
(k=0, 1, 2, 3). It defines 19 mapping tables in order to map
the coded symbols to the elements of Exp-Golomb
codebooks more efficiently. The major improvement is that
because of the regularization of the Exp-Golomb codebooks,
the AVS decoder does not need to store these codebooks.

 Transform and Quantization: In order to reduce rounding
errors, dequantization and inverse transform are considered
in one process. AVS, unlike H.264/AVC, uses an 8×8
integer transform.

 Intra Prediction: Intra-frame prediction in AVS is performed
in 8×8 luma/chroma blocks. AVS defines a total of 9 modes,
whereas in H.264/AVC there is a total of 17 modes.

 Motion Compensation: AVS uses Variable Block Size
Motion Compensation (VBSMC), with 4 block sizes, 16×16,
16×8, 8×16 and 8×8. The number of reference pictures is
limited to maximum two.

 Deblocking Filter: AVS defines an adaptive in-loop
deblocking filter to reduce blocking artifacts due to block-
based coding. The filtering is applied to the boundaries of
luma and chroma blocks, except for the boundaries of
picture or slice.

To give an indication of the relative complexity of the
various modules, we profiled the OpenAVS code in a baseline
Xtensa RISC processor with perfect (zero-wait) memory using
an AVS input bitstream compressed at approximately 4 Mbps.
Fig. 2 shows that Motion Compensation (MC) contributed
almost 2/3 of the total execution time, whereas the second
most computationally complex function is Deblocking filter
(DB) with 12.9%.

Fig. 1. Block diagram of the AVS decoder.

AVS Decoder Profiling Motion Compensation Profiling

Motion Comp

Intra
Prediction

Parsing &
Entropy Coding

Deblocking

Inverse Transform &
Inverse Quant

Other

Luma,
B picture

Chroma,
B picture Luma,

P picture

Chroma,
P picture

Reconstruct

Motion Comp

64.4%

4.5%
8.6%

12.9%

6.1%

3.5%

39.8%

28.9%
13.5%

9.3%

8.5%

Fig. 2. Execution profiling of the software OpenAVS decoder (a) Motion
Compensation (64.4% of the total execution time) (b) Details on the
Motion Compensation profiling.

B. Target Platform

As shown in Fig. 3, the target platform is a heterogeneous
dual core processor which consists of two different cores with
video specific instruction extensions. The instruction set of the
specific processor’s architecture is optimized for embedded
designs. The base 32-bit architecture has a 32-bit ALU, up to
64 general-purpose physical registers, 6 special purpose
registers and 80 base instructions, including compact 16- and
24-bit (rather than 32-bit) RISC instruction encoding. One of
the main features of the specific processor is the ability of
extension through the usage of TIE, which can lead to
acceleration of processor’s performance. TIE is a Verilog-like
language used to describe new instructions, new registers and
execution units, and new I/O ports that are then automatically
added to the processor. New elements (instructions, registers,
etc.) described by TIE language, are called Tensilica
Instructions Extension(s), or, in abbreviation, TIE(s). In the
rest of the paper, the abbreviation TIE(s), will be used to
indicate these new elements and not the language used to
describe them.

M. Koziri et al.: Implementation of the AVS Video Decoder on a Heterogeneous Dual-Core SIMD Processor 675

The two cores in our dual-core processor, referred to as
Stream processor (hereinafter SP) and Pixel processor
(hereinafter PP), are enhanced with simple SIMD and video
oriented TIEs, which are used to accelerate compute-intensive
and data parallel hot spots in the code [10]. A SIMD TIE is,
for example:

Res = xvd_add_16x12(A,B)

which adds two 16-element vectors, each being up to 12-bits
in size. A rich repertoire of SIMD arithmetic, logic, and
load/store instructions provide data parallel execution on
vectors of 8 or 16 elements to match the sizes of block and
macroblocks, respectively. An example of a video oriented
TIE is:

data = xvd_bs_loadgetbits(numbits)
which extracts numbits bits from the input bitstream, and
places them in the variable data for further processing.

The processor used in this work is preconfigured with video
specific TIEs used for older video codecs, such as MPEG-4 or
H.264. These instructions are optimized for the most
performance-intensive algorithms used in video processing,
including: CABAC/CAVLC (used in H.264), deblocking,
transforms (especially for the 4×4 integer transform of H.264),
motion compensation and motion estimation algorithms.
Nonetheless, because these TIEs were designed and optimized
for specific standards (H.264, MPEG-4, VC-1), they cannot be
used efficiently for AVS. Unfortunately we were not allowed
to implement new TIEs, therefore, we focused on making an
optimal reuse of the available TIEs to accelerate the AVS
decoder.

The main task of the SP is to parse and decode the video
bitstream. It has TIE extensions to speed-up the parsing and
decoding of the video headers, motion vectors, and transform
coefficients and (optionally) to perform inverse quantization.
The SP is based on a 5-stage pipeline, and has two tightly
coupled local SRAMs: one 40 KB Instruction SRAM and one
32 KB Data SRAM. Placing instructions and data in these
SRAMs is vital to achieve good performance as we will
examine in the next section.

The PP performs most of the heavy duty computations of
video decoding using SIMD TIE instructions. It is used to
accelerate motion compensation (including quarter pixel
interpolation and reconstruction), intra prediction, inverse
quantization (optionally), inverse transform and the
deblocking filter. PP has one 24 KB Instruction SRAM and
one 40 KB Data SRAM. Fig. 4 shows how the different
modules of the decoding process are shared between SP and
PP.

Another element of the target platform, which is coupled
with PP is the Transpose unit, named TIEQT in Fig. 3. TIEQT
converts columns to rows, as shown in Fig. 5, allowing
computations among columns, which is a necessity in video
coding. In this way, the parallelization is increased, as SIMD
instructions can be used even for columns (after the last are
transposed to rows by TIEQT).

Data transfers between the local SRAMs of the two cores
and between the SRAMs and main memory is accomplished

with a multichannel DMA engine which runs asynchronously
to the execution cores. Any of the two cores can set up and
initiate a 2D DMA transaction by describing, among other
things, the size of the memory access patterns, source and
destination addresses, and the priority schemes between
channels.

Fig. 3. Heterogeneous Dual-Core Video Engine Block Diagram.

Motion
Compensate

T

Intra Predict

En tro p y
De co d e

-1

D

+

+

De b lo ck
F ilte r

In te r
In tra

Q
-1Encoded

Bitstream

Stream
Processor

Pixel
Processor

Pre v io u sly
Re co n stru cte d

Re fe re n ce F rame s

Re co n stru c te d
F rame

Fig. 4. Decoder’s tasks’ partitioning between Stream and Pixel
processors.

Fig. 5. Conversion of columns to rows by the TIEQT unit.

III. AVS VIDEO STANDARD OPTIMIZATION

This section describes the steps taken to transform the un-
optimized OpenAVS code to a dual core implementation
optimized for our target platform.

The OpenAVS code was profiled on the baseline processor
of the target platform and the results indicated that the
baseline processor will have to be clocked at 7.8 GHz to meet
the desired performance requirements under a perfect (i.e. no
latency) memory scenario. The same code, when benchmarked
under the more realistic, non-perfect memory with default read
latencies, resulted in an exorbitant 70GHz clock requirement,
as shown on Table I – 1st row. This is not surprising, since
video decoding is a memory-intensive operation and the target
platform offers no cache, which means all operations are
impacted from the slow memory subsystem. This phenomenon

676 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

can be emphasized if we assume 64-read, 32-write wait states,
which models most of low-cost memory subsystems, resulting
in 700.7 GHz (Table II – 1st row).

 Clearly, there is a large potential for software optimizations
of the AVS decoder using the TIEs and other code
transformations.

We followed a two-phase approach: First, optimization of
OpenAVS decoder targeting a single core SIMD processor
and then mapping the optimized single core code to the target
platform. The first phase includes software optimization to
exploit the available block level parallelism of the algorithm.
Optimization techniques used in this phase are generally
applicable to any SIMD processor. In the second phase, the
code is partitioned into tasks based on the architecture of the
target platform (Fig. 1). Task-level decomposition includes
extracting task-level parallelism, and orchestrating data
exchanges between communicating threads running on the two
cores. Since the two cores of the target platform are optimized
for specific tasks (Fig. 4), the decomposition strategy is not
directly applicable to any multi-core system. Nevertheless, the
general task partitioning scheme can serve as yardstick for
developers attempting to perform task-level decomposition of
a video decoder in a multi-core system.

In the rest of this section we present the main techniques
used in software optimization, block level parallelism and task
parallelism.

A. Software Optimization

Our software optimization strategy focuses on the most
expensive functions of the AVS decoder: motion
compensation, deblocking filter, inverse transform, bitstream
parsing and variable length decoding, and intra prediction.

The main effort in this task is to improve the memory
access behavior of the original AVS decoder. The introduced
changes (i) increase spatial locality of memory accesses,
which is crucial in task level parallelism; (ii) eliminate frame-
based computation that requires expensive main memory
accesses; (iii) restructure the code to optimize data reuse in the
internal SRAMs. Frequently accessed data structures are
identified and explicitly copied to SRAM memory locations,
and some computations are converted from frame-based to
block (or macroblock)-based, and therefore to eliminate
unnecessary data spilling to the main memory. This last step
provided the maximum performance improvement for non-
perfect memory, since frequently used data became
immediately available.

For example, after inspecting the profiling results of the un-
optimized OpenAVS, we noticed that the luma and chroma
interpolation functions should be restructured. The pixel data
that need to be interpolated are fetched from external memory,
which is a particularly expensive operation. For an 8×8 luma
block, we need to access a large number of integer pixels due
to quarter pixel interpolation. For example, referring to Fig. 6:

 To compute the integer pixel D, we only need D itself.

 For each half pixels b and h, we require the access of 4
integer pixels (C,D,E,F for b).

 For each half-pixel j, we require the access of 16 integer
pixels.

 For each quarter pixel a, c, d and n, we require the access
of 10 integer pixels, etc. Note that some of these pixels may be
the same.

Fig. 6. Interpolation of Luma components.

Assuming a uniform distribution among all 16 possible
pixel positions we have an average of
(1+2*4+16+4*10+4*17+4*20)/16 = 13.3125 integer pixel
accesses per pixel, or 852 accesses per 8×8 block. We exploit
this spatial locality by moving the bytes of the block from
external memory to the local SRAM of the pixel processor,
and reuse them from there as many times as needed, with no
wait cycles.

Another optimization example concerns the restructuring of
the code so as to convert computations from frame-based to
block-based, and, therefore to eliminate unnecessary data
spilling to the main memory.

As shown in Fig. 7, OpenAVS includes two main loops to
process a frame. The two separate loops are needed since,
according to the AVS standard, Motion Compensation should
be applied on macroblocks that have not been processed by
the deblocking filter.

for (MB_index=0; MB_index <num_of_MBs; MB_index++)
 ParseOneMacroblock; //Parsing, VLD
 McIdctRecOneMacroblock; //MC, Inverse transform,
Reconstruction

endfor
for (MB_index=0; MB_index <num_of_MBs; MB_index++)

 DeblockOneMacroblock; //Deblocking

endfor

Fig. 7. Pseudo-code for the two main loops in OpenAVS.

If the DeblockOneMacroblock function is called in the first
loop immediately after McIdctRecOneMacroblock, the inputs
to the deblocking filter for MB(col,row) would have already
been filtered, thus violating the AVS standard. The problem
with the reference OpenAVS code is that it causes spill of the
whole frame to the main memory: the output frame of the MC
has to be stored to the main memory, and then retrieved back
from the deblocking filter.

We introduce a data structure that stores the three pixel
rows above and the three pixel columns on the left of the
macroblock MB(col,row) after MC. These 720×3×2 + 16×3×2
= 4416 bytes are the only pixel data needed for the deblocking
filter of MB (col, row). By using these pixel data as inputs to

M. Koziri et al.: Implementation of the AVS Video Decoder on a Heterogeneous Dual-Core SIMD Processor 677

the deblocking filter, we can fuse the two loops, and avoid
spilling a whole frame to the main memory. This optimization
is similar to loop tiling which is frequently used by optimizing
compilers to improve spatial locality in the cache hierarchy of
a processor [11].

Significant performance can also be achieved by reducing
check points, i.e. branches, in the code. The initial OpenAVS
code made extensive use of the min and max functions, in the
Motion Compensation module, to crop the motion vector
(MV) access range within the frame. We eliminate these
checks by explicit frame boundary extension (also known as
frame padding) when we write the reconstructed frame back to
main memory. Although this change entails extra memory
accesses to store the out-of-bound pixels, the overhead is
much less than the over-use of checks in the initial OpenAVS
code. It should be noted that a smarter DMA controller could
automatically extrapolate data for motion vectors beyond
frame boundaries and eliminate the need of the software
overhead for checks or the extra bandwidth from frame
padding, however the target platform’s DMA controller has no
such feature.

Code modifications, similar to those described in this sub-
section, are applied to other parts of the code such as Intra
Prediction, which also requires pixels from neighboring
blocks. The resulting code was profiled in the baseline core of
the target platform under non perfect memory scenario and a
speed-up of 47.9× with respect to the initial OpenAVS code
was obtained, as shown in Table I.

We also ran the same code version in the baseline processor
of the target platform with a more realistic memory
configuration consisting of a 4KB ICache (2-way set
associative, 64 byte line) and an 8KB write-back DCache (2-
way set associative, 64 byte line). The Read/Write latency
from/to main memory was 32 cycles for the first cycle of a
burst, and one cycle after that. For this case, the performance
fell to around 1.95 GHz.

B. Block Level Parallelism

The next step is to exploit instruction and data level
parallelism at the basic block level. The target core can
schedule up to two instructions per cycle in the form of a 64-
bit VLIW instruction. These instructions are automatically
generated by the compiler without user intervention and are
freely intermixed with the rest 32/24/16 bit instructions.

The next two sub-sections describe how we exploit data
level parallelism in two computationally demanding kernels of
the AVS decoder: motion compensation and deblocking filter.

1) Motion Compensation

Motion Compensation is the process of compensating for
the movement of rectangular blocks of pixels between frames.
In contrast to H.264 which supports blocks with size as small
as 4x4, AVS supports only four block sizes, i.e. 16x16, 8x16,
16x8 and 8x8, since smaller blocks are rarely used in high
resolution video coding. The precision of motion vectors is
quarter pixel for luma components and 1/8 pixel for chroma.
As luma and chroma samples at sub-sample positions do not

exist, it is necessary to generate them from nearby coded
samples. Most of the complexity of the MC module,
approximately 40% of the total execution time, is due to the
quarter pixel interpolation. Since motion compensation is the
most computationally expensive tool of AVS, its TIE
acceleration, and especially the implementation of the filters
used in vertical and horizontal interpolation, is critical to
achieve real-time, high resolution video decoding.

In AVS, the predictive value at half sample position can be
obtained with horizontal or vertical interpolation using the
four- tapping filter F1 (-1, 5, 5, -1) and the predictive value at
quarter sample position can be obtained with interpolation
using the four-tapping filter F2 (1, 7, 7, 1). For example, the
interpolation of half sample b in Fig. 7 is given by: b’= -C
+5D + 5E – F and b = clip ((b’+4)>>3). The interpolation at
quarter pixels requires integer and half sample values. For
example, the quarter pixel value a is given by: a’=ee + 7D’ +
7b’ + E and a = clip ((a’+64)>>7).

A key characteristic of interpolation is the significant
amount of data reuse. Fig. 6 shows the positions of integer,
half and quarter samples for luma components. In order to
calculate sample a, we need the values from samples D, E, ee
and b. Although samples D and E are integer pixels, ee and b
are half-pixels and need to be re-calculated.

Taking advantage of the available reuse can significantly
speed-up the entire process. One solution is to store all
samples already computed and needed to interpolate other
samples. However, this approach requires a significant
memory footprint, which makes it prohibitive. Therefore, we
aimed at using the data provided each time for computing
multiple samples. In doing so we implemented a software
“pipeline” such that no reload of the same pixel data is done,
although we may still compute half pixel values more than
once. In this way, the number of loads is dramatically reduced
and a significant speed-up is achieved. Following is an
example that demonstrates the software “pipeline”
implementation of calculating half-pixel interpolation.

Fig. 8 illustrates the computation of the vertical 4-tap filter:
dp’ = ffp + 7*D*8 + 7*hp + H*8, dp = clip((dp’+64)>>7),
where dp indicates quarter-pixel ‘d’, ffp, half-pixel ‘ff’, hp
half-pixel ‘h’, D integer pixel ‘D’ and H integer pixel ‘H’ (Fig.
6).

for (i=0; i<SizeY; i++)

 for (j=0; j<SizeX; j++)
 ffp = - MC[(i-2),j] + 5*MC[(i-1),j] + 5*MC[i,j] - MC[(i+1),j];
 hp = - MC[(i-1),j] + 5*MC[i,j] + 5*MC[(i+1),j] - MC[(i+2),j];
 D = MC[i,j];
 H = MC[(i+1),j];
 pPred[i,j] = Clip ((ffpie + 7*Dpie*8 + 7*hpie + Hpie*8 + 64) >> 7);

 endfor

endfor

Fig. 8. Pseudo-code for interpolation of quarter-pixel d.

OpenAvs calculates the values of quarter-pixel ‘d’ for a
block with size SizeY×SizeX. MC is an array with the integer
pixel values and pPred an array where the calculated
(predicted) values are kept. By using SIMD TIEs the inner

678 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

loop is eliminated and the loads are reduced by a factor of
SizeX. However, ten loads (four each of ffp and hp and two
for D, H) are still needed in each iteration. Taking a closer
look, one can see that data from position (i-1) are used in the
2nd factor for the computation of ffp and in the 1st factor of hp.
In the same way data from position (i) are used in the 3rd
factor of ffp, in the 2nd factor of hp and as D, and so on. With
the software “pipeline” implementation data loaded from a
position are used to calculate all the factors in which they take
part and store each computed factor in a register. When data
from position (i+1), for example, are loaded we calculate
factor –MC[(i+1),j] for ffp, 5* MC[(i+1),j] for hp and H and
keep the results in registers. In this way the number of loads
needed per iteration is reduced, from ten, to only five.

A final note concerns data alignment. MC requires memory
loads of multiple bytes from memory positions that are not
vector aligned, which is an impediment to SIMD
vectorization. Fortunately, target platform’s PP supports a
large number of unaligned load instructions that can be used
for the implementation of motion compensation with the usage
of TIEs. However, a prospective developer must tackle the
problem if the chosen processor does not support unaligned
loads.

The aforementioned SIMD optimizations provide a 4.8×
speed-up to the interpolation kernel. The effect on the total
execution time is a 1.8× speed-up compared to the version
with Variable Length Decoding (VLD) optimizations (Table
I).

2) Deblocking Filter

The deblocking filter is a low pass filter across block
boundaries applied as a last step in the decoder just before
storing the reconstructed block of pixels back in the main
memory. It is used to smooth block edges to improve the
appearance of the reconstructed frame in image areas with low
spatial frequency. Filtering is applied in two steps; first along
horizontal edges and then across vertical edges of each 8x8
block. Fig. 9 shows that only the top rows of the current 8x8
luma block B (col, row) and the bottom rows of the luma
block B (col, row-1) are affected from the deblocking filter,
depending on the value of the boundary strength parameter Bs.
This is a parameter that depends on the difference in coding
types, motion vectors or quantization parameters between the
two blocks on the two sides of an edge, and estimates how
much low-pass filtering needs to be performed. It can take the
value 0 (no filtering), 1 (medium filtering) and 2 (heavy
filtering). It is worth mentioning that all variables needed in
order to determine the filter strength of a given edge are
related to syntax elements and as such are available to the
stream processor, SP, who is responsible for the boundary
strength calculation, while the filtering operation itself
depends on the actual pixel values and therefore is performed
by the pixel processor, PP. Fig. 10 shows the flow of the
algorithm to produce the output pixels for Bs==2 or 1.

The algorithm of Fig. 10 has to be invoked 8 times to
produce a row of output pixels on an 8x8 block, or 16 times to
produce a row of pixels on a 16x16 macroblock. For the latter,

Fig. 9. Adjacent pixels for the horizontal deblock filter.

Fig. 10. The AVS Luma Deblocking Block Diagram.

the boundary strengths of the top two blocks of the
macroblock must be equal.

A data parallel implementation of the deblocking filter uses
the pixel processor TIEs to implicitly unroll the loop and
vectorize the computations of Fig. 10. The pixels p0, p1, p2,
q0, q1, q2 of Fig. 10 become 8 or 16-pixel vectors P0, P1, P2,
Q0, Q1, Q2. The vectorization has the potential to speed-up
execution time of the inner loop by a factor of 8 or 16
provided that the vectors are 8 or 16 bytes aligned,
respectively.

In the vectorized version of the code, the parts of the code
with conditional execution semantics are predicated, so that an
instruction has effect only if the predicate is true. We use bit
vectors as predicates to merge the boolean results of the
conditions to vectors, and we use these vectors as a predicate
to commit or not a particular operation.

The same algorithm is used for the deblocking filter of the
vertical edges. The main difference is that the SIMD
operations we described are suitable for row processing, but
not for the column processing required for the vertical edges.

M. Koziri et al.: Implementation of the AVS Video Decoder on a Heterogeneous Dual-Core SIMD Processor 679

This problem was solved by the use of the TIEQT unit of the
target platform.

The extra overhead to perform the transpose limits the
performance gains of the vertical filters. For example, the
speed-up for the horizontal deblocking filter of Fig. 9 is 6.5×
after SIMD acceleration, whereas the speed-up for the vertical
filter is only 2.5×. The average speed-up of all the deblocking
filter kernels comes down to 3.35×.

The collective effect of SIMD parallelization improves total
execution time by an additional 2.24×, for a total speed-up of
107× compared to the initial OpenAVS code (Table I).

C. Task Level Parallelism

A heterogeneous dual core processor allows simultaneous
execution of different parts of the AVS decoder for a single or
even for multiple macroblocks. There are two major steps to
port the AVS decoder to a multi-core system. First, the code
and related data structures should be partitioned and assigned
to the appropriate core. Second, a communication mechanism
must be set up to transfer data between the two cores.

In the first and most crucial step emphasis is given to
improving the load balance between the two cores. In the
target platform, PP executes disproportionately larger
workload, compared to SP, due to the already existing task
partitioning (Fig. 4).

The function-flow in the macroblock loop of the optimized
single core coder is:

1. ParseOneMacroBlock (SP) :
 Bitstream parsing

2. MciDCTReconOneMacroBlock (PP) :
 InitOneMacroblock
 IntraPredLuma&

IntraPredChroma/InterPredP_exec/InterPredB_
 iDCT+Recon/Copy

3. DeblockOneMacroblock (PP)

4. CopyMBPictureData (DMA transfers, memory stores)

Given the set of TIEs available in the two cores,
ParseOneMacroBlock is the only function that can be mapped
to SP, while MciDCTRecOneMacroBlock and
DeblockOneMacroBlock map to PP. Finally,
CopyMBPictureData is a function that can be directly
substituted by a set of DMA calls and internal SRAM copies,
since it performs the last part of decoding, which is to copy the
decoded macroblock data from the internal SRAM of the pixel
processor back to the external frame buffers. That gives us a
stream processor to pixel processor load ratio of about 20% :
80%, while the identical is 50% : 50%.

To improve load balance between the two cores we had to
thoroughly investigate the code and track the parts of each
function that, when appropriately modified, could be executed
by the stream processor. We briefly present the process for the
MciDCTRecOneMacroBlock function, which was the most
time-consuming.

MciDCTRecOneMacroBlock first calls InitOneMacroBlock
which initializes the structure which keeps the needed info for

the current macroblock. Afterwards, for P- and B-inter
predicted macroblocks, it processes the entire Luma 16x16
macroblock first (in InterPredLumaP or InterPredLumaB),
followed by a loop over the four 8x8 blocks for inverse
transform and reconstruction. Then, it processes both Chroma
8x8 blocks (in InterPredChromaP or InterPredChromaB),
followed by the two 8x8 chroma blocks processing for inverse
transform and reconstruction. The structure for the
InterPredLumaP/InterPredLumaB and InterPredChromaP/
InterPredChromaB functions is very similar. First, there is a
large switch statement that checks the macroblock type and
then a call to the appropriate, according to the macroblock
type, function which checks for the block location and then
determines the motion vector(s) to be used for motion
compensation, based on the block type and availability of its
neighbors. Finally, the core motion-compensation function,
GetBlock is called, which contains all the four-tap luma
filtering to achieve quarter-pixel motion interpolation.

Most of the functions invoked by
MciDCTRecOneMacroBlock are block based functions, which
means that the preparation of all appropriate data and
information (such as motion vectors), along with the
interpolation are executed for each block separately. By being
so, the load-from-external memory and filtering operations for
a macroblock are interleaved. This produces a major
bottleneck in the load balancing between the two cores, as
they are macroblock based, i.e. SP prepares and PP
‘consumes’ data for an entire macroblock. Therefore, the code
must be restructured so as the data and information collection
(which can be executed by the stream processor) is done per
macroblock and not per block.

From the above, only the initialization by
InitOneMacroBlock can obviously be executed by the stream
processor. In order to move more tasks to SP we performed
the following changes:

i. The motion compensation code for luma and chroma was
merged. This results in the sequential processing of
Luma (Y), Chroma-U and Chroma-V in the same
function.

ii. The internal motion compensation memory
(_mc_memory) was increased from the previously single-
block worst case to the full-macroblock worst case.

iii. The GetBlock and GetChromaBlock functions were first
merged into one (GetBlock) that performs motion
interpolation for all 3 components (Y/U/V) and then split
into two functions GetBlock_load and GetBlock_exec.
GetBlock_load is a simple wrapper for the core data-
movement function, that copies data from the appropriate
source addresses in the external reference frame Y/U/V
buffers to the appropriate (sequential) destination
addresses in the internal _mc_memory memory.
GetBlock_exec retrieve the appropriate MC Y/U/V
pointers and performs the actual luma and chroma
filtering.

Through the above modifications, nearly half of the initial
MciDCTRecOneMacroBlock can be executed by SP.

680 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

Following the same approach the deblocking filter
functionality was partitioned into the functions
DeblockOneMacroBlock_sp and DeblockOneMacroBlock_pp.
The resulted function-flow in the macroblock-loop is:

1. ParseOneMacroBlock (SP) :
 Bitstream parsing
 InitOneMacroblock
 InterPredP_load/InterPredB_load (for P and B-

coded macroblocks): These 2 functions
eventually fill up the _mc_memory internal
memory with the appropriate data and prepare all
information (mainly motion vectors) that is
needed later.

2. DeblockOneMacroblock_sp (SP)
3. MciDCTReconOneMacroBlock (PP) :

 IntraPredLuma&
IntraPredChroma/InterPredP_exec/InterPredB_
exec (for I/P/B macroblocks): These result in the
MC Y/U/V pointers retrieval and the actual
filtering of data, storing them to the Pred array.

 iDCT+Recon/Copy
4. DeblockOneMacroblock_pp (PP)

After repartitioning of the code as described, the stream
processor to pixel processor load ratio was improved from
20%-80% to 45%-55%.

The final porting step was to set up a communication
mechanism to transfer data between the two cores. The target
platform uses a DMA engine to interleave data transfer with
computation and increase system performance. The non-
blocking functionality of the DMA requires that SP and PP
synchronize their execution at specific points. The DMA unit
decouples the execution of the two cores allowing for non-
blocking transfers. The running number of concluded data
transfers can also be used as a synchronization mechanism by
having the producing core transmitting data up to a specific
number, and the receiving core waiting for a predefined
number of transfers.

To increase the degree of decoupling, multiple buffering is
used to allow the two cores to work on different macroblock
data. Our current implementation uses a two MB overlap
between the two cores, which means that SP is processing
MBn+2, whereas PP is still at MBn. Deeper buffering schemes
require a substantial increase of internal SRAM requirements.

Moreover, the presented code restructuring guarantees that
data flows only from SP to PP, from main memory to PP, and

from PP back to main memory. In other words, there is no
transfer from the pixel processor to the stream processor that
would create a cyclic dependency and would reduce the
performance potential of the code. Fig. 11 shows a graphical
representation of the data transfers for the initialization and for
the first couple macroblocks.

 The dual core mapping resulted in an additional
performance improvement of 1.8×, out of the ideal 2×, due to
overhead associated with the DMA set-up, and some small
residual load imbalance.

D. Summary

The previous sub-sections showed how we ported the un-
optimized OpenAVS code to the heterogeneous dual core
target platform. Our approach was to optimize the code for the
single core model and then move to the final optimization for
the dual core model. Although we worked with specific video
decoder and processor, many of the optimizations presented
can be generalized. A summary of the most important of them
follows.

 Optimization for single core model: after profiling the
initial code, we tracked the most expensive functions and
focused the optimization strategy on them. Optimizations
target the improvement of memory access and the reduction of
complexity. This is accomplished by:

i. Identifying frequently accessed data structures and
copying them to internal memory.

ii. Restructuring the code to optimize data reuse in the
internal memory.

iii. Restructuring the code to convert computations from
frame-based to block-based.

iv. Reducing check points, i.e. branches, in the code.
v. Reducing data loads by implementing software pipelines.

 Optimization for dual core model: the load between the
two cores should be as much balanced as possible (ideally
50% - 50%). This is accomplished by:

i. Identifying functions in tasks, operated by the most
‘burdened’ core, that can be executed by the less
‘burdened’ core.

ii. Restructuring the remaining functions so as to create new
ones that can be executed by the less ‘burdened’ core.

iii. Restructuring the code so as to guarantee that data flows
only one way, thus preventing cyclic dependencies
between the two cores.

Fig. 11. Task scheduling of the AVS decoder in the target dual core engine using DMA transfers.

M. Koziri et al.: Implementation of the AVS Video Decoder on a Heterogeneous Dual-Core SIMD Processor 681

TABLE I
PERFORMANCE RESULTS ON TARGET PLATFORM USING MEMORY

SUBSYSTEM WITH DEFAULT WRITE READ LATENCIES. EQUIVALENT FCLK IS

THE CORE CLOCK FREQUENCY TO DECODE PAL-D1 VIDEO (720×576×25

FPS).

Optimization Equivalent Fclk
Speed-up

Factor
0. Baseline OpenAVS code 70073 MHz 1

1. Software Optimizations and
SRAM placement

1463 MHz 47.89

2.
 T

IE

op
ti

m
iz

at
io

n 1. Parsing and VLD 1365 MHz 51.34
2. (1) plus MC,
Intra Prediction,
Inverse Transform

761 MHz 92.08

3. (2) plus Deblocking 654 MHz 107.1

3. Dual Core 359 MHz 195.2

TABLE II

PAL-D1 CORE CLOCK FREQUENCIES IN MHZ ON TARGET PLATFORM

USING: A) (0-READ, 0-WRITE), B) DEFAULT (8-READ, 4-WRITE), C) (64-READ,
32-WRITE) WAIT LATENCIES.

Optimization a) b) c)

0. Baseline OpenAVS code 7805 70073 700704
1. Software Optimizations and
SRAM placement

1216 1463 1533

2.
 T

IE

op
ti

m
iz

at
io

n 1. Parsing and VLD 1164 1365 1417
2. (1) plus MC,
Intra Prediction,
Inverse Transform

632 761 814

3. (2) plus Deblocking 544 654 706

Fig. 12. PAL-D1 core clock frequencies on target platform using: a) (0-
read, 0-write), b) default (8-read, 4-write), c) (64-read, 32-write) wait

latencies for TABLE II optimization stages.

IV. CONCLUSION

This paper outlined the steps taken to optimize and extract
block and task level parallelism from a video decoding
application for a heterogeneous dual core processor with
SIMD instructions. The total speed-up of more than 195×
compared to a software x86-based implementation, enables
real-time, 25fps decoding of D1 video.

Through the process of porting AVS, the Chinese video
coding standard, to the target dual core processor, we
highlighted a number of optimization techniques that can be
generalized to any SIMD processor. Moreover, we showed
how to detect and extract parallelism at all levels of
granularity and how their exploitation can lead to significant
performance improvement.

Given the similarities of AVS to H.264 (AVC), and the
availability of custom-TIEs that handle bitstream parsing,
transform and deblocking according to H.264 standard, the

same steps presented here can be used to accelerate H.264
decoding on the same hardware platform, with similar results.
In the future, we plan to test our approach on alternative
platforms and compare its efficiency with symmetric multi-
core processors that allow for data-decomposition multi-
threading.

REFERENCES
[1] R. B. Lee, “Multimedia extensions for general-purpose processors,”

Proc. IEEE Workshop on Signal Processing Systems, pp. 9-23, Nov.
1997.

[2] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales, “AltiVec
extension to PowerPC accelerates media processing,” IEEE Micro, vol.
20, no. 2, pp. 85-95, Mar/Apr 2000.

[3] S. H. Jo, S. Jo, Y. H. Song, “Efficient Coordination of Parallel Threads
of H.264/AVC Decoder for Performance Improvement”, IEEE
Transactions on Consumer Electronics, Vol. 56, No. 3, pp 1963-1971,
August 2010.

[4] J. Huang, J. Lee, “Efficient VLSI Architecture for Video Transcoding”,
IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, pp1462-
1470, August 2009.

[5] J. Lau, “MPEG-4, AVS deliver better video compression more flexible
format,” Electronic Times Asia, June 1st, 2006.

[6] ISO/IEC IS 13818, General Coding of Moving Picture and Associated
Audio Information, 1994.

[7] Information technology – Coding of audio-visual objects – Part 2:
Visual (ISO/IEC FCD 14496), July 2001.

[8] Draft ITU-T Recommendation and Final Draft International Standard of
Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10
AVC), May 2003.

[9] L. Fan, S. Ma, F. Wu, “Overview of AVS Video Standard,” 2004 IEEE
International Conference on Multimedia and Expo (ICME '04).

[10] “VDO Instruction Set Architecture (ISA) Extensions Reference
Manual,” July 2007.

[11] J.L. Hennessy, D.A. Patterson, “Computer Architecture. A Quantitative
Approach,” Morgan Kaufmann, 4th Edition, 2006.

BIOGRAPHIES

Maria G. Koziri (M’08) received the Dip. Eng. degree in computer
engineering from Technical University of Crete, Greece, in 2003 and the
Ph.D. degree from University of Thessaly, Greece, in 2007.

Her research interests include video compression, scalable video coding,
rate–distortion optimization, as well as computer architecture.

Dimitrios T. Zacharis is currently a Ph.D. candidate at the University of
Thessaly, Greece, where he received the Dip. Eng. and the M.Sc. degrees in
Computer and Telecommunications Engineering, in 2006 and 2009
respectively.

Ioannis Katsavounidis (S’95-M’98) received the Ph.D. degree in Electrical
Engineering from the University of Southern California, Los Angeles, in
1998.

He was with InterVideo Inc. in Fremont, CA, as Director of Software from
2000-2007, where he worked on a number of video codec problems, including
error resilience, encoder rate-distortion optimization and multi-core HD-
resolution decoder software optimizations. He was one of the co-founders and
CTO of Cidana Corp. working on multimedia and DTV applications on
embedded devices from 2007-08. He joined the Computer and
Communications Department, University of Thessaly, Volos, Greece in 2008,
where he is currently Associate Professor.

Nikos Bellas is currently an Associate Professor at the Electrical and
Computer Engineering Department at the University of Thessaly, Greece. He
received his M.Sc. and Ph.D. degrees from the ECE Department of the
University of Illinois at Urbana-Champaign in 1995 and 1998, respectively.
From 1999 to 2007 he was a principal member of technical staff at the
Embedded Imaging Systems Lab of Motorola Labs, Chicago, IL working on
chip design for multimedia processors, and CAD tools for architectural
synthesis.

